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ABSTRACT

Federated learning (FL) for histopathology image segmenta-
tion involving multiple medical sites plays a crucial role in
advancing the field of accurate disease diagnosis and treat-
ment. However, it is still a task of great challenges due to
the sample imbalance across clients and large data hetero-
geneity from disparate organs, variable segmentation tasks,
and diverse distribution. Thus, we propose a novel FL ap-
proach for histopathology nuclei and tissue segmentation,
FedSODA, via synthetic-driven cross-assessment operation
(SO) and dynamic stratified-layer aggregation (DA). Our SO
constructs a cross-assessment strategy to connect clients and
mitigate the representation bias under sample imbalance.
Our DA utilizes layer-wise interaction and dynamic aggre-
gation to diminish heterogeneity and enhance generaliza-
tion. The effectiveness of our FedSODA has been evaluated
on the most extensive histopathology image segmentation
dataset from 7 independent datasets. The code is available at
https://github.com/yuanzhang7/FedSODA .

Index Terms— Histopathology image segmentation,
Federated learning, Medical image, Dynamic aggregation

1. INTRODUCTION

Collaborative training across multiple sites for histopathology
image segmentation, encompassing both nuclei and tissues,
stands as a pivotal task in the field of precise disease diagno-
sis and treatment [1]. Due to the intricate annotation of cel-
lular boundaries and the imperative requirement to maintain
privacy protections concerning clinical data across multiple
sites, the consolidation of extensive labeled datasets to attain
better model generalization remains restricted. Thus, an im-
perative arises for a more robust and generalized model.
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Fig. 1. Challenges: a) Large data heterogeneity arises from
disparate organs, variable segmentation target sizes, and di-
verse intensity distributions. b) Sample imbalance from sub-
stantial variations in sample quantities across different clients.

However, there are two main challenges: 1) Data hetero-
geneity. The huge variations in data distribution across differ-
ent clients stem from the disparate organs, the varying sizes of
segmentation targets, and the variable intensity derived from
chromatin patterns. As shown in Figure 1. a), The size of
cells and tissues from various organs exhibits a notable range,
spanning from 3 µm to 150 µm. The significant discrepancy
among clients further amplifies the disparity in features, lead-
ing to an inductive bias within the local models, thereby man-
ifesting as poor performance on the global model. 2) Sample
imbalance. Due to various disease prevalences, sample im-
balance arises in the data volume across clients, ranging from
30 to 210 (Figure 1. b)). Clients with limited samples are
prone to over-fitting, resulting in weak performance on un-
seen data and an incapacity to attain accurate representation.

Fortunately, federated learning provides a promising
paradigm, enabling joint learning across multiple centers
without data sharing. The classic FedAvg [2] and its vari-
ants [3, 4] effectively establish mutually independent client
training, with jointly optimized global models. Subsequently,
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noteworthy methods such as FedProx [5], FedBN [6], and
HarmoFL [7], further explore the trade-offs between clients
and the server in terms of the divergence among local models
and the feature bias inherent in the global model. However,
these prior works are not directly tailored to our specific task
and struggle to address the above challenges in segmentation.

To tackle the above obstacles, we propose a novel ap-
proach called FedSODA, involving synthetic-driven cross-
assessment operation (SO) and dynamic stratified-layer ag-
gregation (DA). (1) For the challenge of sample imbalance,
we propose a synthetic-driven cross-assessment operation to
overcome the over-fitting of client models on unseen data.
Our FedSODA synthesizes interaction information based on
client distribution, constructs a cross-assessment strategy
connecting clients, and mitigates the representation bias from
clients with limited samples, thus improving the generaliza-
tion and robustness of the global model. (2) For the challenge
of data heterogeneity, we introduce dynamic stratified-layer
aggregation to ease the inductive bias within local models due
to size variations. Specifically, the shallow and deep layers
present different feature representations [8] are conducive to
segmenting small nuclei and large tissues respectively. Un-
like weighting entire networks [2, 5], our FedSODA utilizes
layer-wise interaction and autonomously updates suitable
weights, thus emphasizing personalized representations for
each client to better align with the size-specific features.

In summary, our FedSODA contributes in the following
ways: (1) Synthetic-driven cross-assessment operation is pro-
posed to construct a cross-assessment strategy connecting
clients, thereby mitigating the representation bias under sam-
ple imbalance. (2) Dynamic stratified-layer aggregation is
proposed to counteract the inductive bias within local mod-
els due to data heterogeneity, thus emphasizing personalized
representations for each client to better align with the size-
specific features. (3) To the best of our knowledge, our study
marks the first instance of evaluating FL performance with the
most extensive histopathology image segmentation dataset,
derived from a compilation of seven independent datasets.

2. RELATED WORK

2.1. Federated Learning

Federated learning aims to coordinate clients through up-
dates and communication, to acquire a global model at the
aggregation server without leaking raw data. FedAvg [2]
along with the subsequent works [5, 6, 7] mentioned above,
have propelled advancements on FL. However, these methods
are not customized for our specialized histopathology image
segmentation, rendering them less effective for the inherent
challenges. FedProx [5] focuses on global aggregation drift
by adding a proximal term to each local objective. FedBN
[6] concerns feature shifts among clients by preserving lo-
cal batch normalization parameters. Additionally, RHFL [9]

aligns models by additional shared data to reduce negative
effects from noisy clients. FSMAFL [10] utilizes abundant
public data to bridge the imbalance of limited private data.
Nevertheless, the requirement for an additional and represen-
tative proxy dataset [11] raises the cost of data acquisition.

2.2. Federated Learning for Histopathology Image

In light of privacy concerns, the research community has be-
gun exploring FL for histopathology images[12]. HistoFL[13]
applies FL with randomized noise generation on gigapixel
whole slide images. Prop-FFL[14] proposes an optimization
objective function based on proportional fair resource alloca-
tion. ProxyFL[15] suggests an extra proxy model to enhance
privacy in prognosis, replacing the centralized server. How-
ever, these methods primarily focus on fairness or privacy
issues without addressing the challenges of data heterogene-
ity and sample imbalance. Furthermore, these efforts have
predominantly substantiated FL’s effectiveness in classifi-
cation and prognosis tasks, with limited attention given to
segmentation[16, 17]. HarmoFL[7] firstly explores the local
and global update drift by normalizing the frequency-space
and amplitude for nuclei segmentation, which may not inher-
ently tackle the challenge of heterogeneity between assorted
segmentation targets. Different from existing works, we in-
vestigate a novel federated learning framework for sample
imbalance with high heterogeneity in histopathology nuclei
and tissue segmentation tasks, which dynamically aggregates
clients to alleviate contradiction and enhance generalization.

3. METHODOLOGY

3.1. Synthetic-driven Cross-assessment Operation

We propose a synthetic-driven cross-assessment operation to
mitigate the sample imbalance between clients in Fig 2. Each
dataset has different distributions with mean µ and standard
deviation δ. In the tth communication, Gaussian synthetic in-
formation vt ∼ N (µ, σ) is randomly generated and then up-
loaded to the server to evaluate the similarity between clients.
Also, a memory bank is constructed to enhance the stabil-
ity and consistency of the synthesized data space by combin-
ing the historical information from the previous communica-
tion rounds and newly generated samples from the current:
vt = γvt−1 + (1 − γ)vt where γ is an attenuation coef-
ficient used to control the proportion of historical informa-
tion. A segmentation consistency loss Lsc is introduced to
further address the sample imbalance, promoting better co-
ordination between clients. The consistency parameter is de-
fined as ξ = max(0, |y−ŷ|−ϵ) with label-output pairs {y, ŷ}.
The detailed formula is described as: Lsc = Lce(ξy, ŷ).

Finally, the segmentation accuracy is constrained by the
combined effect of the segmentation consistency loss Lsc

and cross-entropy loss Lce functions. Our segmentation con-
sistency loss Lsc penalizes incorrectly segmented boundary



Fig. 2. Methodology. Schematic overview of our proposed FedSODA illustrated on the histopathology image segmentation.

pixels prevents the segmentation of large organs from being
overly influenced by small-sized cells and enhances optimiza-
tion consistency across global models.

3.2. Dynamic Stratified-layer Aggregation

We propose a dynamic stratified-layer aggregation strategy to
adaptively integrate shallow and deep layers of weights to en-
hance size-specific representation under data heterogeneity.
The entire client network is stratified into L layers with vary-
ing feature representation capabilities.

The synthetic information vtk generated based on the
client Ck is input into each client’s parametric model on
the server side to obtain the corresponding output features
set {Fk,1,Fk,2, . . . ,Fk,m}, where m denotes the number of
clients and F is the set of output features for each layer:
F = {f1, f2, . . . , fL}. Each stratified layer, such as layer
l, performs cosine similarity calculations cos(·) cross clients
to obtain the dynamic weights: {slk,1, slk,2, . . . , slk,m}, where
slk,m = cos(f l

k,k, f
l
k,m). Then the normalization is performed

as ŝlk,m = slk,m/
∑

sl. Then, the weights of the server model
are dynamically aggregated layer by layer based on the in-
teraction between clients. The t communication round of the
server model wt,l aggregates the l layer of the t− 1 round of
client models with corresponding interaction weights:

wt,l =
1

m

m∑
k=0

[λpt−1
k + (1− λ)

∑
j ̸=k

ŝlk,j · pt−1
j ] (1)

The updated server model wt is obtained through the above
dynamic aggregation process across all layers wt,l and then
distributed to each client model for the subsequent epoch of
training: pt ← wt. Our strategy grants the server model a
heightened degree of interactive freedom, thereby enhancing
the network’s generalization performance.

4. EXPERIMENT

4.1. Data Details and Experimental Settings

To evaluate our FedSODA for multi-site histopathology im-
age segmentation, we conduct comprehensive experiments on
seven datasets, including (1) CoNSeP [18], (2) CPM-17 [19],
(3) CRAG [20], (4) CryoNuSeg [21], (5) Glas [22], (6) Ku-
mar [23], and (7) TNBC [24]. CRAG [20] and Glas [22] are
tissues with relatively large numbers of samples, while the
other 5 datasets are nuclei with a small number of samples.
Each dataset is allocated to each client with its original divi-
sion. U-Net [25] is trained for 300 epochs with 5 local up-
date epochs for each communication round. All comparative
experiments adopt identical initialization and communication
round settings. We use a batch size of 4, Adam optimizer with
a learning rate of 1e−4, and momentum of 0.9 and 0.95. All
experiments are performed on an NVIDIA GPU 3090 with 24
GB. The Dice and accuracy are used to evaluate the results.

4.2. Experimental Results

Our FedSODA achieves the best segmentation results com-
pared with the relevant FL approaches [2, 5, 6, 7].

Quantitative Results. With the synthetic-driven cross-
assessment operation and dynamic stratified-layer aggrega-
tion strategy mitigating local and global drifts, our method
consistently outperforms others, averaging a Dice of 83.41%
and an accuracy of 92.52% in Table 1. The notable boost of
FedSODA on the large tissue dataset of CRAG, 6.16% Dice
higher than HarmoFL and 2.78% accuracy higher than Fe-
dAvg, shows effective mitigation of data imbalance bias. Be-
sides, FedSODA steadily improves the client results without
sacrificing model performance on small nuclei datasets.

Qualitative Results. We visualize the segmentation re-



Table 1. The segmentation results of Dice and accuracy for seven clients. Each column represents one client.

Dice % Accuracy %
CoNsep CPM-17 CRAG CryoNuSeg Glas Kumar TNBC Average CoNsep CPM-17 CRAG CryoNuSeg Glas Kumar TNBC Average

FedAvg 80.48 87.01 84.09 81.81 86.97 79.99 78.01 82.62 FedAvg 92.45 94.85 86.58 93.96 87.58 92.18 95.47 91.87
[2] 0.04 0.03 0.08 0.02 0.08 0.03 0.06 0.05 [2] 0.03 0.02 0.08 0.02 0.07 0.03 0.03 0.04

FedProx 79.82 86.79 83.37 80.89 87.28 79.58 77.73 82.21 FedProx 92.32 94.72 86.53 93.55 87.33 92.07 95.44 91.71
[5] 0.04 0.04 0.08 0.03 0.08 0.04 0.06 0.05 [5] 0.02 0.02 0.07 0.02 0.08 0.04 0.03 0.04

FedBN 81.46 86.94 82.24 80.92 87.63 79.99 79.93 82.73 FedBN 92.50 94.83 85.88 93.33 88.22 92.18 95.90 91.83
[6] 0.04 0.04 0.06 0.02 0.07 0.03 0.04 0.04 [6] 0.03 0.02 0.07 0.02 0.06 0.03 0.02 0.04

HarmoFL 79.69 86.65 80.33 81.12 86.54 80.88 78.38 81.94 HarmoFL 92.06 94.74 84.09 93.39 86.97 92.48 95.57 91.33
[7] 0.04 0.03 0.08 0.04 0.08 0.02 0.06 0.05 [7] 0.03 0.02 0.08 0.02 0.08 0.03 0.03 0.04

FedSODA 81.10 87.06 86.49 82.61 87.98 80.17 78.43 83.41 FedSODA 92.75 94.91 89.36 93.80 88.68 92.52 95.70 92.53
(Ours) 0.03 0.03 0.07 0.02 0.08 0.03 0.06 0.05 (Ours) 0.03 0.02 0.06 0.02 0.08 0.03 0.03 0.04

Fig. 3. The segmentation results for different models.

Fig. 4. Ablation analysis for hyper-parameters: a) Average
Dice for different λ with a fixed γ = 0.25. b) Average Dice
for different attenuation coefficient γ with a fixed λ = 0.4.

sults to demonstrate a qualitative comparison, as shown in
Fig 3. Our FedSODA reduces the amount of false positives
and negatives and has a better shape and boundary segmenta-
tion output for histopathology nuclei and tissues. Compared
with the second label column, other FL methods either con-
tain more erroneous segmentation regions or unclear bound-
aries. With the proposed dynamic stratified strategy, our ap-
proach shows more accurate and smooth boundaries. Besides,
visualization results from the first to third rows demonstrate
superior FedSODA performance in completing holes and en-
hancing inter-structural consistency. The fourth row further
shows our FedSODA better distinguishes clustered nuclei.

Ablation Study We further conduct ablation study to in-

SO DA Lsc Average Dice %
82.62

✓ 82.80
✓ 82.97

✓ ✓ 83.11
✓ ✓ ✓ 83.41

Table 2. The ablation study of each module in FedSODA.

vestigate the key components and hyperparameters of Fed-
SODA. The results prove the efficacy of each module in our
framework in Table 2. Our approach effectively mitigates the
adverse impact of data heterogeneity, thereby enhancing the
model’s dynamic aggregation capabilities. Additionally, we
further analyze how the weighted degree λ and attenuation
coefficient γ affect the performance of our method. Exces-
sive retention of local information may hinder clients from
identifying shared features during aggregation, whereas con-
strained retention contributes to the stability of local model
optimization, especially in the presence of significant hetero-
geneity. In Fig. 4 a), our FedSODA reaches the highest Dice
with λ = 0.4, while in Fig. 4 b), retaining 25% of historical
information yielded the best memory bank performance.

5. CONCLUSION

In this paper, we focus on the histopathology nuclei and tis-
sue segmentation task across multiple sites. FedSODA is the
first federated learning framework that makes effective use
of the most extensive datasets for histopathology nuclei and
tissue segmentation. We propose a synthetic-driven cross-
assessment operation to effectively mitigate the sample im-
balance across clients and a dynamic stratified-layer aggre-
gation strategy to enhance shared representation and elim-
inate heterogeneity. We conduct extensive experiments on
seven histopathology datasets and demonstrate the effective-
ness of our method. Overall, our work contributes to fostering
a broader impact of FL in real-world medical applications.
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