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Abstract. Multi-modality magnetic resonance imaging (MRI) is crucial
for accurate disease diagnosis and surgical planning by comprehensively
analyzing multi-modality information fusion. This fusion is characterized
by unique patterns of information aggregation for each disease across
modalities, influenced by distinct inter-dependencies and shifts in infor-
mation flow. Existing fusion methods implicitly identify distinct aggre-
gation patterns for various tasks, indicating the potential for developing
a unified and explicit aggregation pattern. In this study, we propose
a novel aggregation pattern, Energy-induced Explicit Propagation and
Alignment (E2PA), to explicitly quantify and optimize the properties
of multi-modality MRI fusion to adapt to different scenarios. In E2PA,
(1) An energy-guided hierarchical fusion (EHF) uncovers the quantifica-
tion and optimization of inter-dependencies propagation among multi-
modalities by hierarchical same energy among patients. (2) An energy-
regularized space alignment (ESA) measures the consistency of informa-
tion flow in multi-modality aggregation by the alignment on space fac-
torization and energy minimization. Through the extensive experiments
on three public multi-modality MRI datasets (with different modality
combinations and tasks), the superiority of E2PA can be demonstrated
from the comparison with state-of-the-art methods. Our code is available
at https://github.com/JerryQseu/EEPA.

Keywords: Energy model · Multi-modality MRI · Explicit quantifica-
tion

1 Introduction

Multi-modality magnetic resonance imaging (MRI) fusion offers critical anatom-
ical and functional information for promoting the accuracy and success in dis-
ease diagnosis and surgical planning. MRI, being the gold-standard technique
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for noninvasive tissue characterization, encompasses a range of modalities such
as LGE (late gadolinium enhanced), Flair (fluid attenuation inversion recovery),
T1c (T1-contrasted), T1n (spin-lattice relaxation), T2w (spin-spin relaxation),
and more [30]. Distinct combinations of modalities are employed in diverse clin-
ical diagnoses, for example, myocardial infarction diagnosis involves LGE, cine,
and T2 modalities, while brain tumor assessment utilizes T1c, T1n, T2w, and
T2f modalities [16] [22] [3]. Different diseases require different information ag-
gregation patterns from different modality combinations. Therefore, effective
information aggregation from multi-modalities is of great clinical significance to
quantify morphological and pathological changes, facilitating treatment planning
and patient management.

Fig. 1: Determining a unified multi-modality MRI aggregation pattern is still a chal-
lenge. Different diseases rely on distinct inter-dependencies and shifts in information
flow among modalities.

However, determining a unified aggregation pattern for multi-modality MRI
remains challenging. The information aggregation of multi-modality MRI follows
a pipeline where information from different modalities flows in accordance with
their inter-dependencies. A specific disease requires a specific aggregation pattern
of various MRI modalities (Fig. 1). It can be found that the aggregations of
different diseases rely on distinct inter-dependencies and shifts in information
flow among modalities. Due to the different inter-dependencies and information
flow in various aggregations, a unified aggregation pattern is difficult to define
for the diseases in various scenarios.

Inter-dependencies and information flow are extensively investigated in the
existing aggregation methods. Existing methods can be categorized into two
groups based on whether the aggregation can be dynamically optimized. (1)
Fixed. In these methods [33] [38] [11], the relevance of different modalities is
defined as pre-operation according to the clinical experience. Hence, the aggre-
gation performance relies on the quality of pre-defined relevance. The fixed ag-
gregation requires these methods to redesign their frameworks when confronted
with new scenarios. (2) Dynamic. In these methods [20] [18] [15] [23] [39] [30] [43],
features from different modalities are concatenated into a whole, and rely on task
labels to drive the network to automatically aggregate the features. Due to the
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lack of specific optimization targets for the inter-dependencies and information
flow, the aggregation is implicit and unstable. As a result, a single framework
operates differently when applied to various diseases with different modalities.

Fig. 2: The properties of multi-modality MRI information aggregation: 1. In the case
of the same disease, multi-modality MRI exhibits the same inter-dependencies across
different patients. 2. In the information flow, the aggregated information retains the
inherent details from each modality.

Motivated by the energy model, the inter-dependencies and information flow
can be explicitly quantified to overcome the above challenges. Energy models
capture dependencies among variables in various applications, including tasks
like out-of-distribution detection [25], alignment in incremental learning [12], and
structured prediction [1]. To quantify interdependence and information flow, we
define energy based on the fundamental properties in both aspects(Fig. 2):

– 1. In the case of the same disease, multi-modality MRI exhibits the same
inter-dependencies across different patients’ features. Consequently, the inter-
dependencies of multi-modality MRI remain constant for the same scenario.
In other words, within the same scenario, diverse patients’ multi-modality
features are aggregated in the same way.

– 2. In the information flow, the aggregated feature preserves the consistent
information derived from each modality. Those features for each disease are
highly similar. Hence, there is consistency in the flow of information from
multi-modality to aggregation.

According to the above properties, we propose a novel aggregation pattern,
Energy-induced Explicit Propagation and Alignment (E2PA), to enable the ex-
plicit quantification of multi-modality MRI fusion in different scenarios. In E2PA:
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(1) An energy-guided hierarchical fusion (EHF) uncovers the explicit quantifica-
tion and optimization of inter-dependencies propagation by an attention-based
enhancement and a hierarchical same energy among patients. (2) An energy-
regularized space alignment (ESA) aligns the representations of different modal-
ities by QR decomposition [10] and measures the consistency of information flow
by energy minimization. The contributions are as described below.

– A novel aggregation prototype, Energy-induced Explicit Propagation and
Alignment (E2PA), explicitly quantifies aggregation from the inter-dependencies
and information flow by the energy model. This fundamental property-based
multi-modality aggregation pattern is adaptive to different medical scenarios
directly and greatly boosts the performance of downstream diagnostic tasks.

– An energy-guided hierarchical fusion (EHF) enforces the optimization of
inter-dependencies propagation of multi-modality MRI from attention-based
representation and explicit quantification of the same energy among patients
in hierarchical propagation. It establishes an equivalence between the mea-
surement of inter-dependencies and the optimization of the energy to the
aggregation.

– An energy-regularized space alignment (ESA) ensures the consistency of in-
formation flow in multi-modality aggregation by minimizing the energy on
the factorized and aligned representation. It identifies a provable theory that
guarantees the consistency of information in multi-modality aggregation.

2 Related works

Multi-modality MRI fusion To utilize information from multi-modality MRI
assisting clinical diagnosis, extensive works focus on multi-modality MRI aggre-
gation/fusion [2] [40] [32] [31]. The aggregation methods could be divided into:

(1) Task-driven (fixed). The fusion is constructed following the tasks related
to different modalities [29]. [42] employs the different segmentation results to
guide. In [33], the relevance of different pathology detection on multi-modality
MRI is studied to select task-related modality MRI to aggregation. Following the
relation among cardiac myocardium, scar, and edema. [37] set a coarse-to-fine
way to fuse multi-modality CMR. Similarly, [21] sets a stack structure according
to the order of various cardiac tissues segmentation for the information aggre-
gation of multi-modality CMR. For different diseases, it makes the task-driven
aggregation method requires retraining/redesign. Hence, task-driven aggregation
has limited adaptability.

(2) Data-driven (dynamic). These methods weight multi-modality MRI ac-
cording to the interdependence/similarity automatically. The weights of differ-
ent modalities are calculated following the similarity by networks [28] [38]. To
achieve adaptive weights for each modality, [30] designs an auto-weighted super-
vision mechanism to track the importance of the scar and edema segmentation.
To search the inter-dependencies among multi-modalities, [13] and [43] conduct
united adversarial learning to mine the correlation in liver tumor segmenta-
tion. In these methods, the aggregation results are evaluated by the downstream
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segmentation/quantification tasks. The inter-dependencies and information flow
lack specific optimization targets. Hence, a single framework operates differently
when applied to various diseases with different modalities.

Energy-based models Energy-based model [14] assigns low energies to ob-
served data-label pairs and high energies otherwise [8] [17] to maximize likelihood
estimation. It has been applied to various aspects, including out-of-distribution
sample detection [19] [25], structured prediction [1] [27], improving adversarial
robustness [8] [35] and alignment in incremental learning [12]. In [44], the energy-
based model transports source style to target style by implicit learning not the
combination of normalized codes. [34] evaluates the performance of the energy-
based model on domain adaptation. The above works all rely on the ability of
energy functions to capture dependencies among variables. Hence, considering
the same inter-dependencies and consistent information flow in multi-modality
fusion, we propose to minimize the energy to explicitly quantify them.

3 Method

In our E2PA (Fig. 3), the representations of multi-modalities are extracted by
encoders respectively. EHF performs hierarchical attention-based fusion and ex-
plicitly quantifies the inter-dependencies among patients by defined energy. ESA
measures the consistency of information flow on the aligned modality represen-
tation and aggregation results.

Fig. 3: E2PA consists of: a) EHF uncovers the quantification and optimization of inter-
dependencies among multi-modalities by hierarchical same energy among patients. b)
ESA measures the consistency of information flow in multi-modality aggregation by
the alignment on space factorization and the energy minimization.

3.1 EHF quantifies the inter-dependencies propagation

EHF adopts the attention-based fusion network and hierarchical energy quan-
tification to explicitly quantify the inter-dependencies propagation of multi-
modalities. For multi-modality MRI aggregation, a set of scanned MRI (with N
patients) {(M i

1, ... ,M
i
j , lab

i)}Ni=1 denotes the j modalities MRI and the label of
diagnosis target (lab). The hierarchical representations of each modality (Brain
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Fig. 4: The details of attention-based fusion network in EHF.

MRI for example {c1− c4}, {w1−w4}, {n1−n4}, {tf1− tf4}) are extracted by
the encoders ({L1, L2, L3, L4}).

Attention-based fusion network captures the inter-dependencies by multi-
scales attention. Inspired by the attentional feature fusion [4], attention-based
fusion is established on multi-modality MRI. The multi-scale attention over-
comes the difference on semantics and scales for the representation of inter-
dependencies. On hierarchical representations, aggregation results (f1, f2, f3, f4)
are constructed by the attention fusion following the inter-dependencies among
modalities (Fig.4). In hierarchical aggregation, the same attention network is
utilized to aggregate the multi-modality MRI. Here, the fusion on tf4, c4, n4,
and w4 is taken for example. Through the attention-based fusion, the represen-
tations of different modalities (tf4, c4, n4 and w4) are fused into f4. Firstly,
the multi-modality representations with the size of C ×D ×W ×H are added
as a whole (Af ). Second, the fused representation is fed into local network to
extract the local attention in the channel dimension. The Af is extracted by the
convolution and normalization layers with the size of C/r ×D ×W ×H. Then
the ReLU, convolution, and normalization layers are applied to achieve the local
channel-wise attention (C×D×W ×H). Thirdly, the global attention is realized
by a global-pooling and two convolution & normalization layers with the size of
C× 1× 1× 1. Fourth, the global and local attention is added and converted into
sigmoid to achieve the attention in multi-modality MRI. Finally, the attention is
applied to Af for the attention-corrected fusion (f4). The above fusion process
is applied to hierarchical multi-modality MRI representations.

Energy function of EHF: To explicitly quantify the inter-dependencies
propagation, EHF defines the relation between energy score and inter-dependencies.
In the energy-based formulation, the target is to find an energy function i.e.,
Ei−d(x, y) that gives the lowest energy to correct results and higher energy to
other results (x is the inter-dependencies, y is the label). The aggregation must
produce the value y∗ for the smallest: y∗ = argminEi−d(x, y). The joint prob-
ability of input x and label y can be estimated through the Gibbs distribution:
p(x, y) = exp(−Ei−d(x, y))/Z, where Z =

∑
x

∑
y exp(−Ei−d(x, y)) is called the

partition function that marginalizes over x and y. By marginalizing out y, the
probability density for x can be achieved: p(x) =

∑
y exp(−Ei−d(x, y))/Z. Due
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to the difficulty of estimating Z, a free energy (F (x)) serves as the ’rationality’
of the occurrence of the variable x:

F (x) = −log
∑

exp(−Ei−d(x, y)) (1)

To realize the quantification, we impose the proposition according to property
(1):

– Proposition 1. The same inter-dependencies among multi-modality MRI in
different patients will make the energy Ei−d(x, y) be equal for any instance.

Precisely, the label y, which cannot be quantified, is converted to the inter-
dependencies of another patient (x′). x and x′ are generated by encoders and
attention fusions ((L+ at) and (L+ at)

′). This situation follows the latent vari-
able [14]. Due to the different inputs of the encoder, the inherent information in
the aggregation is the inter-dependencies. Hence, the energy function is updated
to Ei−d(x, x

′; (L+at), (L+ at)
′
). To avoid the collapse in energy optimization on

two variables [14], EHF takes two ways: i) Fixing one variable in optimization.
The (L+ at)

′ is fixed to generate fixed x′ as inter-dependencies. With itera-
tive optimization, the measurement of inter-dependencies will be improved and
achieve a stable value finally. ii) Enlarging energy to incorrect answers. The neg-
ative likelihood from probabilistic modeling is utilized to regularize. Hence, the
energy of inter-dependencies can be formulated as:

Li−d(x, x
′; (L+ at), (L+ at)

′
) = Ei−d(x, x

′; (L+ at),

(L+ at)
′
) + log

∑
exp(−Ei−d(x, x̃

′; (L+ at), ˜(L+ at)
′
))

(2)

,where x̃′ is the incorrect answer generated by ˜(L+ at)
′
. It can be simplified:

Li−d(x, x
′; (L+ at), (L+ at)

′
) =

∑
L1−L4

Ei−d(x, x
′; (L+ at), (L+ at)

′
)− F (x)

(3)
By this energy calculation on hierarchical aggregation, the inter-dependencies in
multi-modalities can be explicitly quantified through iterative optimizations.

3.2 ESA ensures the consistency in information flow

ESA ensures the consistency of information flow in multi-modality aggregation
by two steps: align information and minimize energy (Fig. 5). EHF focuses on
the same inter-dependencies will motivate the encoders and attention fusion
((L + at)) to prefer the same information in different patients and ignore the
consistency in information flow.

Information Alignment. Since the information of different modalities is
in different spaces, the measurement of consistency can not be directly on the
information flow (proof in Supplementary). Hence, information alignment is nec-
essary before measurement. It can be formulated to:

Falign(f, c, l, t) =

4∑
i=1

ci, li, ti
T→ fi (4)
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Fig. 5: The details of the alignment process in ESA. The information of multi-
modalities in different vector spaces is aligned into the same space for effective fusion.

where T is the transformation function of spaces. The information of different
modalities and aggregation is represented as a m×n matrix. The matrix can be
factorized to one orthogonal matrix Q and one upper triangular matrix R (QR
decomposition [10]):

f4 = Q4
fusion@R4

fusion, tf4 = Q4
tf@R4

tf (5)

where @ is the matrix multiplication operation, the dimension of Q is a m × n
and R is a n × n matrix. The Q, is the space of R, which can be viewed as
the orthogonal basis of each modality representation. Hence, the information
alignment turns into the problem solving T on the Q of fusion results (f4) and
multi-modality MRI (tf4, c4, n4, w4). To simplify the solution process, f4 and
tf4 are taken example: Q4

tf
T→ Q4

fusion. To find the value of T , the process is
converted to an equation (viewing T as a matrix):

Q4
tf@T = Q4

fusion Q4
tf@Q4

tf
−1

@Q4
fusion = Q4

fusion. (6)

Hence, T is equal to Q4
cine

−1
@Q4

fusion. Since the Q4
fusion is known, the target is

to find Q4
tf

−1. Since the property of orthogonal matrix on Q:

Q4
tf@Q4

tf
−1

= I,Q4
tf@Q4

tf
T
= I, (7)

it can easily find Q4
tf

T
= Q4

tf
−1. Hence, the value of T can be obtained: T =

Q4
tf

T
@Q4

fusion. Since the upper triangular matrix R4
tf is corresponding to Q4

tf ,
the alignment requires to be performed on it (R4

tf@T = R4
tf

′). Finally, the
aligned information is:

tf4a = Q4
fusion@R4

tf
′
. (8)
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Since the f4 and tf4 are aligned into the same space, the measurement of consis-
tency can be conducted directly on f4 and tf4a. The same operation is performed
on hierarchical multi-modality information.

Energy function of ESA: With the aligned information, ESA introduces an
energy function to measure the information consistency between the aggregation
and multi-modality MRI. It is based on the property (2):

– Proposition 2. The information in multi-modality MRI is maintained in
the aggregated results. The aggregation needs to have low energy Er(x, y)
with multi-modality representations.

The above situation follows the implicit regression [14] in energy-based model:
In the aggregation, the multi-modality MRI representations (multiple answers)
are equally good. Simplify, the dependency between the aggregation result f4
and multi-modality representations tf4a, c4a, n4a, w4a cannot be formulated as
a mapping from f4 to tf4a, c4a, n4a, orw4a directly. Hence, ESA models the
consistency and according it to design energy function:

Er(f4, tf4a, c4a, n4a, w4a) =

tf,c,n,w∑
i

∥Gat(f4)−GLi4a∥2 . (9)

where Gat and GL are the model functions to achieve f4 and tf4a. Through min-
imization of Er(), the information from different modalities will be maintained
under this constraint. The regularization can be formulated as:

Lr =

1,2,3,4∑
i

Er(fi,Falign(fi, ci),Falign(fi, li),Falign(fi, ti)). (10)

Compared with Li−d, which guides the same inter-dependencies from different
patients, Lr constrains the consistency in information flow in the same patient.
Through the minimization of two energy functions on hierarchical aggregation,
L = Li−d +Lr, the inter-dependencies and consistency are explicitly quantified.
With different downstream tasks, L can be combined with the optimization of
the target directly.

Table 1: The description of three public datasets (seg-segmentation, class-
classification). Here MRNet is a public dataset.

Name Modality Target Train Test Total
MyoPS cine,LGE,T2 Seg 15 10 25
BraTS T1c, T1n, T2f, T2w Seg 834 417 1251

MRNet Sagittal T2,Axial PD,
Coronal T1 Class 753 377 1130



10 X. Qi et al.

4 Experiments

We evaluate E2PA on various multi-modality MRI scenarios, including: car-
diac pathology segmentation (MyoPS dataset [16]), brain tumor segmentation
(BraTS2021 dataset [22]), and detection of anterior cruciate ligament tears (MR-
Net dataset [3]). The division of training and testing data is shown in Tab. 1.
Our E2PA is based on Pytorch with the Adam optimization. The encoders are
same as U-net [24]. All experiments are performed on a single NVIDIA TITAN
RTX GPU. The metrics of Dice [6] and Area Under Curve (AUC) are utilized
for segmentation and classification performance evaluation, respectively. More
details of experiments are presented in Supplementary.

4.1 Main results

For different downstream tasks, various state-of-the-art multi-modality MRI
methods are adopted for comparison. For segmentation task (MyoPS and
BraTS): AWSNet [30], MyoPS-Net [23], NestedFormer [36], HyperDense-Net
[7], MAML [41], and MMSNet [45]. For classification task (MRNet): TransMed
[5], MRNet [3], ELNet [26], and MRPyrNet [9].

Table 2: The quantitative results on BraTS and MyoPS reveal the superior ability of
our E2PA on multi-modality MRI segmentation.

Methods BraTS% MyoPS%
TC ET WT AVG scar edema LV RV MYO AVG

HyperDense-Net 84.1 80.3 87.1 83.8 57.3 68.6 93.1 87.8 77.9 76.9
MAML 86.9 85.4 89.9 87.4 61.1 70.9 93.3 89.9 79.3 78.9

MMSNet 83.3 82.1 88.4 84.6 60.5 73.6 94.1 89.3 83.8 80.3
AWSNet 87.0 86.6 92.8 88.8 61.1 72.3 92.8 88.2 81.4 79.2

NestedFormer 88.4 85.1 91.3 88.3 62.0 73.1 93.9 89.9 84.7 80.7
MyoPS-Net 90.1 81.1 89.3 86.8 63.4 74.0 94.0 92.0 86.1 81.9

Ours 91.0 87.3 93.5 90.6 64.7 73.9 94.4 91.1 87.0 82.2

BraTS: The experimental results for brain tumor segmentation from four
modalities MRI (T1c, T1n, T2f, T2w) evaluate the superiority of aggregation.
The targets contain tumor core (TC), enhancing tumor (ET) and whole tumor
(WT). Quantitative: It can be observed from Tab. 2 that HyperDense-Net
achieves the lowest performance on each tissue (84.1%, 80.3%, and 87.1%). This
indicates that the specifically designed fusion modules in the network will be
more effective than the direct feature concatenating (HyperDense-Net). Our
E2PA achieves the highest Dice score 90.6%, and this indicates that the pro-
posed multi-modality MRI aggregation is superior to others. The lower Dice
score on ET than on other targets (WT, TC) indicates the ET is difficult to seg-
ment. The highest Dice score of our E2PA on ET (87.3%) proves the ability for
multi-modality aggregation. Qualitative: The qualitative analysis on brain MRI
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evaluates the significance on various regions. From Fig. 6, it can be found that:
The core of tumor (red) can be well detected in all methods. This indicates that
these multi-modality methods could recognize the significant tumor feature. For
the enhance (green) and edema (blue) regions of tumor, our E2PA achieves the
best performance. This indicates that the tumor information is well aggregated.
The balance performance on different tumor regions also proves that E2PA can
obtain the representations from multi-modality MRI better than others.

Fig. 6: The framework of FTP: (a)Task-aware memory network stores the mapping
(task identity to model weights) by the hypernetwork to avoid catastrophic forgetting.
(b) Adaptive prototype matching aggregates the prototypes for continual optimization
on heterogeneous streams.

MyoPS: The experimental results The targets contain scar, edema, left ven-
tricle (LV), right ventricle (RV) and myocardium (MYO). Quantitative: The
quantitative results on the segmentation from multi-modality MRI (LGE, T2,
cine) evaluate the superiority of E2PA. For the regions of scar, LV, MYO, and
average, our E2PA achieves the best Dice score (64.7%, 94.4%, 87% and 82.2%).
This indicates the aggregation of E2PA is effective for cardiac MRI. In the re-
gions of edema and RV, our E2PA achieves similar performance with MyoPS-Net.
MyoPS-Net relies on various combinations in representation and aggregation for
each target region segmentation. The similar results also prove that E2PA is ef-
fective for multi-modality MRIaggregation. Qualitative: The qualitative anal-
ysis on cardiac MRI evaluates the significance on different regions. In Fig. 6,
the edema (green) and scar (red) regions are more difficult to segment than LV
(yellow) & RV (pink) & MYO (blue). E2PA achieves fine-grained segmentation
on these regions. This indicates its superiority on achieving target-related in-
formation from multi-modality. Since the scar and edema are on the MYO, the
best segmentation of E2PA also proves that the significance of different regions
in different modalities is well aggregated.

MRNet dataset: Our E2PA achieves superior classification performance
on multi-modality knee MRI. The state-of-the-art classification methods for the
classification of anterior cruciate ligament tears on MRNet dataset are compared,
including TransMed [5], MRNet [3], ELNet [26], and MRPyrNet [9]. Our E2PA
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Table 3: The superior performance of E2PA on classification from multi-modality knee
MRI. MRPyrNet is embedded into MRNet (method) and ELNet respectively (Abn-
Abnormal, Men-Meniscal).

AUC MRNet ELNet MRPyrNet
(MRNet)

MRPyrNet
(ELNet) TransMed Ours

Abn 93.0% 93.7% 93.1% 94.0% 95.8% 97.8%
ACL 95.1% 94.9% 96.0% 95.7% 96.3% 97.5%
Men 83.3% 86.8% 89.3% 89.1% 92.3% 94.4%

achieves 2%, 1.2%, and 2.1% higher AUC in the classification of abnormal, ACL
tear, and meniscal tear(Tab. 3). This indicates that the energy-induced aggre-
gation of E2PA provides a better representation of multi-modality MRI for the
classification task than other multi-modality analysis methods. Compared with
the ELNet and MRPyrNet, which utilize clinical knowledge to locate anomalies
as priors, our E2PA achieves better performance through the optimization of the
energy functions and the classification label guided loss.

Table 4: The ablation study indicates the contributions of different modules in E2PA.

EHF ESA DiceAttention
Fusion Li−d Alignment Lr

✓ ✓ ✓ ✓ 90.6%
✓ ✓ ✓ 88.1%

✓ ✓ ✓ 81.0%
✓ ✓ ✓ 86.5%
✓ ✓ ✓ 83.1%

4.2 Model analysis

To further analyze the proposed E2PA, we design ablation study, inter-dependencies
analysis, and consistency of information flow analysis on BraTS and MyoPS
datasets.

Ablation study. To evaluate the contribution of each module in E2PA, dif-
ferent ablation strategies are designed for comparison on BraTS dataset. E2PA
contains EHF (attention fusion and Li−d) and ESA (Alignment and Lr). It
can be found that each module of E2PA is effective for multi-modality MRI
segmentation (Tab. 4). The attention fusion module and Li−d bring 2.5% and
4.1% improvements on Dice score. This indicates that the energy-guided inter-
dependencies quantification can further improve the aggregation. The alignment
and Lr brings 9.6% and 7.5% improvements. The QR decomposition-based align-
ment and energy-regularized inherent information can further improve the con-
sistency of information flow.
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Fig. 7: The evaluation of the quantification of inter-dependencies. The visual represen-
tations reveal the inter-dependencies in aggregation. The hierarchical representations
are aligned.

Inter-dependencies. To analyze the quantification of inter-dependencies,
the representations of different modalities and aggregation are visualized. From
Fig. 7, different regions of interest are shown in various modalities of cardiac
MRI. In cine, the information of LV, RV, and MYO are obvious in hierarchi-
cal representations. In LGE, RV & LV & scar regions can be observed. In T2,
RV and edema regions are obvious. The hierarchical aggregations of our E2PA
contain all the target-related regions from multi-modality MRI. Hence, the inter-
dependencies among the three modalities can be quantified that: i) LV segmen-
tation is related to LGE & cine; ii) RV segmentation is related to LGE & cine
& T2; iii) MYO segmentation is related to cine only; iv) scar information is
from LGE; v) edema information is from T2. This also reveals that E2PA has
the ability to quantify the inter-dependencies among multi-modality MRI. More
inter-dependencies are shown in Supplementary.

Consistency of information flow. To analyze the consistency of infor-
mation flow in the aggregation, the residuals between aggregation representa-
tions (f1− f4) and multi-modality representations (c1− c4, l1− l4, t1− t4) &
aligned representations (c1a − C4a, l1a − l4a, t1a − t4a). From Fig. 8, the resid-
ual representation between aggregation and LGE is that: i) The less LV & RV
& scar representations in the residual reveals that this information in aggrega-
tion is from LGE. The consistent information is maintained by E2PA. ii) The
aligned representation l1a has less residual with aggregation f1 than l1. This
reveals that the alignment in ESA promotes the measurement of consistency in
information flow in aggregation.
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Fig. 8: The residual reveals the consistency of information flow in aggregation, and
the essential alignment in E2PA.

5 Conclusion

In this paper, we propose an energy-induced Propagation and Alignment (E2PA)
to explicitly quantify the inter-dependencies by hierarchical same energy among
patients (EHF) and measure the consistency of information flow (ESA). The
novel aggregation prototype optimizes the properties of multi-modality MRI ag-
gregation to adapt to different scenarios. Through the extensive experiments on
3 public multi-modality MRI datasets (with different modality combinations and
tasks), the superiority of E2PA can be demonstrated from the comparison with
state-of-the-art methods. It will greatly boost the performance of downstream
clinical diagnostic tasks.
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